Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2797: 299-322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570469

RESUMO

Prior analysis of intact and modified protein forms (proteoforms) of KRAS4B isolated from cell lines and tumor samples by top-down mass spectrometry revealed the presence of novel posttranslational modifications (PTMs) and potential evidence of context-specific KRAS4B modifications. However, low endogenous proteoform signal resulted in ineffective characterization, making it difficult to visualize less abundant PTMs or perform follow-up PTM validation using standard proteomic workflows. The NCI RAS Initiative has developed a model system, whereby KRAS4B bearing an N-terminal FLAG tag can be stably expressed within a panel of cancer cell lines. Herein, we present a method for combining immunoprecipitation with complementary proteomic methods to directly analyze N-terminally FLAG-tagged KRAS4B proteoforms and PTMs. We provide detailed protocols for FLAG-KRAS4B purification, proteoform analysis by targeted top-down LC-MS/MS, and validation of abundant PTMs by bottom-up LC-MS/MS with example results.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Processamento de Proteína Pós-Traducional , 60705
2.
Hum Vaccin Immunother ; 19(2): 2215677, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264688

RESUMO

Certain aspects of the immunogenicity and effectiveness of the messenger ribonucleic acid (mRNA) vaccines (mRNA-1273 and BNT162b2) developed in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are still uncharacterized. Serum or plasma samples from healthy donor recipients of either vaccine (BNT162b2 n = 53, mRNA-1273 n = 49; age 23-67), and individuals naturally infected with SARS-CoV-2 (n = 106; age 18-82) were collected 0-2 months post-infection or 1- and 4 months after second dose of vaccination. Anti-Spike antibody levels and avidity were measured via an enzyme-linked immunosorbent assay (ELISA). Overall, vaccination induced higher circulating anti-Spike protein immunoglobulin G (IgG) antibody levels and avidity compared to infection at similar time intervals. Both vaccines produced similar anti-Spike IgG concentrations at 1 month, while mRNA-1273 demonstrated significantly higher circulating antibody concentrations after 4 months. mRNA-1273 induced significantly higher avidity at month 1 compared to BNT162b2 across all age groups. However, the 23-34 age group was the only group to maintain statistical significance by 4 months. Male BNT162b2 recipients were approaching statistically significant lower anti-Spike IgG avidity compared to females by month 4. These findings demonstrate enhanced anti-Spike IgG levels and avidity following vaccination compared to natural infection. In addition, the mRNA-1273 vaccine induced higher antibody levels by 4 months compared to BNT162b2.


Assuntos
COVID-19 , Vacinas , Feminino , Masculino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Adolescente , Idoso de 80 Anos ou mais , Lactente , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais , RNA Mensageiro , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...